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Three quantitative structure-activity relationship approachessprincipal components regression, partial
least-squares regression, and alternating conditional expectationsswere used to investigate relation-
ships between the flavor thresholds of 38 alcohols, 40 esters, 45 aldehydes, and 43 ketones in beer
and their structures. Strong nonlinear relationships between the logarithm of the flavor threshold and
four or five structure descriptors were found for each class of compounds (R 2 ) 0.920, 0.937, 0.920,
and 0.928 for alcohols, esters, aldehydes, and ketones, respectively). Simple nonlinear relationships
between the alcohol, ester, and aldehyde thresholds and the numbers of hydrogen atoms in the
molecules were also demonstrated.
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INTRODUCTION

Many classes of compounds have been shown to play an
important role in the flavor characteristics of foods and
fragrances (1). The flavor impacts of many of the identified
compounds have been assessed in various systems. Often those
in food have been reported as flavor thresholds (2). It is of
interest to investigate the relationships between the sensory
perception of compounds and their molecular properties.

Many powerful computational methods, including artificial
neural networks (ANN) (3), partial least-squares regression
(PLSR) (4-6), and comparative molecular field analysis
(CoMFA) (7), have been used in quantitative structure-activity
relationship (QSAR) studies to investigate relationships between
the properties or activities of compounds and their structures,
especially in the fields of drug design and medicinal chemistry.
QSAR techniques have also been used by flavor chemists to
explore relationships between molecular structure and flavor
properties and to give insight into the mechanism of interaction
between flavor compounds and flavor receptors. Rossiter (8)
investigated the correlation between chemical structure and the
intensities of several fruity flavor characters of 27 aliphatic esters
by three QSAR approaches: CoMFA, principal components
analysis (PCA), and a Hansch approach. Multiple linear
regression (MLR) and CoMFA were applied to model the aroma
thresholds in water of 46 pyrazines with bell-pepper aroma (9).
The flavor thresholds of organic acids in beer were modeled as
a function of their molecular properties using principal com-
ponents regression (PCR), MLR, and PLSR (10,11). More
recently, ANN was used to classify the aroma types of 98
pyrazines and to predict their threshold values (3). ANN and

self-organizing molecular field analysis were applied to analyze
the aroma quality of pyrazine derivatives (12).

The objective of the work reported here was to investigate
the relationships between the flavor thresholds of alcohols,
esters, ketones, and aldehydes in beer and their structures using
several QSAR approaches.

MATERIALS AND METHODS
Threshold Data and Structure Descriptors.Flavor thresholds in

beer for four classes of flavor compounds commonly found in foods
(38 alcohols, 40 esters, 45 aldehydes, and 43 ketones) were obtained
from the literature (13, 14) (seeTables 1-4). The data were expressed
in milligrams per liter and were converted to millimoles per liter for
modeling.

The variables initially chosen for modeling the flavor thresholds of
the four classes of flavor compounds included physical and chemical
property data (including boiling point, melting point, flash point, and
density) and structure descriptors obtained from inspection of molecular
structure. These included the number of carbon atoms in the molecule
(C•NO), the number of hydrogen atoms (H•NO), the number of
oxygen atoms (O•NO), the number of carbon-carbon double bonds
(CC•NO), the number of conjugated double bonds (CONJ), the number
of carbon atoms that connect to three or four non-hydrogen atoms
(3C•NO), the number of carbon atoms on the alcohol side of an ester
linkage (AC•NO), and the number of carbon atoms in the longer chain
adjacent to a ketone function (LC•NO). Models were constructed with
different combinations of these molecular and property descriptors.
Leave-one-out cross-validation was performed. The models with the
highest cross-validated multiple correlation coefficient squared (R2cv)
for each class were considered to be optimal combinations.

Computational Methods. Three QSAR approachessPCR (15),
PLSR (4-6), and alternating conditional expectations (ACE) (16-19)s
were applied using the SCAN, Software for Chemometric Analysis,
release 1.1 program (Minitab Inc., State College, PA). The relationships
between molecular structure and log(flavor thresholds) for each of four
classes of compounds were investigated. The modeling capability
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(goodness of fit) was judged by the residual sum of squares (residual
SS) and by the multiple correlation coefficient squared,R2. The
prediction capability (goodness of prediction) was indicated by the
residual predictive error sum of squares (residual PRESS) and by the
cross-validatedR2 (R2cv).

ACE graphs of the transformations of the predictor variables selected
as optimal were examined.

RESULTS AND DISCUSSION

The sensory data used (13, 14) were obtained with the
ascending method of limits (20), and compounds were purified
to constant threshold. Panelists used smell and/or taste as they
saw fit to distinguish the samples with added substances from
the control samples. Individual flavor thresholds were deter-
mined for each compound using a moderate-size panel (typically
g12 individuals). The panel threshold was computed as the
geometric average of the individual thresholds.

Principal components regressionattempts to find orthogonal
components from the predictors (X data matrix) such that the

first principal component shows the largest variation inX and
the second principal component orthogonal to the first represents
the second largest variation, etc. (15). Then the response is
related to the principal components by ordinary least squares
regression (OLS). PCR is advantageous when a data set is
overdetermined (many variables and few observations) or highly
collinear, which is often the case in QSAR and spectral analysis.
One drawback of PCR is inefficiency, because the components
are selected on the basis of their ability to explain variance in
theX matrix rather than for their ability to predict the response.

Partial least-squares regressionis frequently used in QSAR
to model the relation between two data matrices,X andY (6).
To overcome the shortcoming of PCR, PLSR attempts to extract
a set of orthogonal components from theX matrix that are of
importance in predicting the response. The main attraction of
this biased regression method is its capability to handle
multicollinear data sets, where the unbiased least-squares
solution is not reliable due to large variance.

Table 1. Flavor Thresholds Reported in Beer (13, 14) and Structure Descriptorsa Chosen for 38 Alcohols

threshold threshold

alcohol mg/L mmol/L C•NO H•NO CC•NO CONJ 3C•NO alcohol mg/L mmol/L C•NO H•NO CC•NO CONJ 3C•NO

methanol 10000 310 1 4 0 0 0 benzyl alcohol 900 8.3 7 8 3 3 1
ethanol 14000 300 2 6 0 0 0 1-hepten-3-ol 0.15 0.0013 7 14 1 0 0
1-propanol 800 13 3 8 0 0 0 1-heptanol 1 0.0086 7 16 0 0 0
2-propanol 1500 25 3 8 0 0 0 2-heptanol 0.25 0.0022 7 16 0 0 0
1-butanol 450 6.1 4 10 0 0 0 2-phenylethanol 125 1.02 8 10 3 3 1
2,3-butanediol 4500 50 4 10 0 0 0 tyrosol 200 1.4 8 10 3 3 1
2-butanol 16 0.22 4 10 0 0 0 1-octen-3-ol 0.2 0.0016 8 16 1 0 0
isobutanol 200 2.7 4 10 0 0 1 1-octanol 0.9 0.0069 8 18 0 0 0
tert-butanol 1600 22 4 10 0 0 1 2-octanol 0.04 0.00031 8 18 0 0 0
1-penten-3-ol 0.35 0.0041 5 10 1 0 0 1-nonanol 0.08 0.00055 9 20 0 0 0
1-pentanol 80 0.91 5 12 0 0 0 2-nonanol 0.075 0.00052 9 20 0 0 0
2-pentanol 45 0.51 5 12 0 0 0 linalool 0.08 0.00052 10 18 2 0 2
3-pentanol 50 0.57 5 12 0 0 0 nerol 0.5 0.0032 10 18 2 0 2
2-methyl-1-butanol 65 0.74 5 12 0 0 1 R-terpineol 2 0.013 10 18 1 0 3
isoamyl alcohol 70 0.79 5 12 0 0 1 1-decanol 0.18 0.0011 10 22 0 0 0
cis-3-hexen-1-ol 13 0.13 6 12 1 0 0 2-decanol 0.015 0.00009 10 22 0 0 0
trans-2-hexen-1-ol 15 0.15 6 12 1 0 0 1-undecanol 0.5 0.0029 11 24 0 0 0
1-hexanol 4 0.039 6 14 0 0 0 2-undecanol 0.07 0.00041 11 24 0 0 0
2-hexanol 4 0.039 6 14 0 0 0 1-dodecanol 0.4 0.0022 12 26 0 0 0

a C•NO, number of carbon atoms; H•NO, number of hydrogen atoms; CC•NO, number of carbon−carbon double bonds; CONJ, number of conjugated double bonds;
3C•NO, number of carbon atoms connecting to three or four non-hydrogen atoms.

Table 2. Flavor Thresholds Reported in Beer (13, 14) and Structure Descriptorsa Chosen for 40 Esters

threshold threshold

ester mg/L mmol/L C•NO H•NO O•NO AC•NO CONJ ester mg/L mmol/L C•NO H•NO O•NO AC•NO CONJ

methyl formate 5000 83 2 4 2 1 0 isoamyl propionate 0.7 0.0049 8 16 2 5 0
methyl acetate 550 7.4 3 6 2 1 0 n-hexyl acetate 3.5 0.024 8 16 2 6 0
ethyl formate 150 2.0 3 6 2 2 0 ethyl heptanoate 0.4 0.0025 9 18 2 2 0
ethyl acetate 30 0.34 4 8 2 2 0 n-amyl butyrate 0.6 0.0038 9 18 2 5 0
ethyl pyruvate 85 0.73 5 8 3 2 2 heptyl acetate 1.4 0.0088 9 18 2 7 0
ethyl lactate 250 2.1 5 10 3 2 0 2-phenylethyl acetate 3.8 0.023 10 12 2 8 3
n-propyl acetate 30 0.29 5 10 2 3 0 ethyl octanoate 0.9 0.0052 10 20 2 2 0
isobutyl formate 30 0.29 5 10 2 4 0 n-octyl acetate 0.5 0.0029 10 20 2 8 0
ethyl butyrate 0.4 0.0034 6 12 2 2 0 methyl caprate 1 0.0054 11 22 2 1 0
ethyl isobutyrate 5 0.043 6 12 2 2 0 ethyl nonanoate 1.2 0.0064 11 22 2 2 0
sec-butyl acetate 12 0.10 6 12 2 4 0 isoamyl hexanoate 0.9 0.0048 11 22 2 5 0
isobutyl acetate 1.6 0.014 6 12 2 4 0 ethyl decanoate 1.5 0.0075 12 24 2 2 0
n-butyl acetate 7.5 0.065 6 12 2 4 0 octyl butyrate 1.2 0.0060 12 24 2 8 0
tert-butyl acetate 24 0.21 6 12 2 4 0 ethyl undecanoate 1 0.0047 13 26 2 2 0
isoamyl formate 5 0.043 6 12 2 5 0 ethyl laurate 3.5 0.015 14 28 2 2 0
ethyl levulinate 300 2.1 7 12 3 2 0 isoamyl nonanoate 2 0.0088 14 28 2 5 0
ethyl isovalerate 1.3 0.010 7 14 2 2 0 octyl hexanoate 5 0.022 14 28 2 8 0
ethyl valerate 0.9 0.0069 7 14 2 2 0 ethyl palmitate 1.5 0.0053 18 36 2 2 0
isoamyl acetate 1.2 0.0092 7 14 2 5 0 ethyl linoleate 4 0.013 20 36 2 2 0
ethyl hexanoate 0.21 0.0015 8 16 2 2 0 ethyl oleate 3.5 0.011 20 38 2 2 0

a C•NO, number of carbon atoms; H•NO, number of hydrogen atoms; O•NO, number of oxygen atoms; AC•NO, number of carbon atoms at the alcohol side of ester
linkage; CONJ, number of conjugated double bonds.
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Alternating conditional expectationsis a nonlinear, nonpara-
metric regression method that estimates optimal nonlinear
transformations of both response and predictor variables (16,
19). In regression problems, the use of transformations of
independent or dependent variables is a common practice to
aid in understanding nonlinear relationships between predictors
and response. Such transformations are often arbitrary or
intuition-inspired and generally are not the optimal ones. ACE
provides an approach to find transformations that produce the
best-fitting additive model through an iterative algorithm using
conditional expectations (16). Because knowledge about the
shape of the transformations obtained in ACE is helpful in
understanding the relationships between structure and activity,
ACE has recently been applied in QSAR studies (18, 21, 22).

In the SCAN implementation of ACE, this nonlinear regres-
sion model has the form

where the transform functionsfi are smooth but otherwise
unrestricted functions of the predictor variables, which can be
obtained by smoothers estimated using an iterative least-squares
algorithm. The response is then modeled as the sum of the
transform functions. One of the advantages of ACE over PCR
and PLSR is its capability to model nonlinear relationships
between predictors and response. In general, this model has no
simple analytical form and the ACE predictions in SCAN
include two steps: First, the transform function values corre-
sponding to each predictor are calculated by linear interpolation
between two values according to the estimated transform
function [xi, fi (xi)]. Then, the predicted response values are
obtained as the sum of transform function values.

A method to represent the degree of branching of a molecule
was devised; the number of carbon atoms with three or four of
its bonds connected to atoms other than hydrogen was defined
as the 3C•NO.

Models were constructed with various combinations of the
structure descriptors and the chemical properties. The strongest
models (highestR2cv) for each of the four classes of compounds

studied were obtained with combinations of four or five structure
descriptors (shown inTables 1-4) and without any of the
property data.

The relationships between the logarithms of thresholds
(expressed as millimoles per liter) of 38 alcohols and their
structure descriptors (Table 1) were investigated using PCR,
PLSR, and ACE. The results are summarized inTable 5. The
optimal number of PLSR components derived from the five
predictors was four (corresponding to the lowest residual PRESS
and the largestR2cv), which was the same as the optimal number
of PCR components. This result suggests that the relationship can
be modeled with a modest number of fundamental predictors. It
was obvious that ACE gave better results than the other two
approaches, withR2 ) 0.920 andR2cv ) 0.826. TheR2cv is
more conservative thanR2 and generally considered to provide
a more realistic estimate of the ability of a model to make pre-
dictions for other conditions (23). The notably stronger model
produced with ACE indicated that one or more of the relation-
ships between the structure descriptors (C•NO, H•NO,
CC•NO, CONJ, and 3C•NO) and the logarithms of alcohol
thresholds were nonlinear. The ACE transformations are shown
in Figure 1; this revealed the underlying relationships between
the pred-
ictors and response.Figure 2 shows the relationship between
the logarithms of observed alcohol thresholds and the predictions
obtained using ACE. Three compounds deviated somewhat from
the model; these were 1-penten-3-ol and 2-butanol (above the
line) and 2,3-butanediol (below). Examining the forms of the
transforms inFigure 1 permits interpretation of the effects of
the predictors on the flavor thresholds of alcohols. Higher flavor
thresholds (weaker impacts) were observed with smaller num-
bers of carbon atoms, smaller numbers of carbon-carbon double
bonds, larger numbers of conjugated double bonds, and a greater
extent of branching. Examination ofTable 1 shows that only
three compounds had the higher level of conjugated double
bonds, and all three were aromatic, so the effect here may be
mainly differentiation between aliphatic and aromatic alcohols.
Obviously aromatic compounds differ to a much greater extent
than is represented by three conjugated double bonds; however,

Table 3. Flavor Thresholds Reported in Beer (13, 14) and Structure Descriptorsa for 45 Aldehydes

threshold threshold

aldehyde mg/L mmol/L H•NO O•NO CC•NO 3C•NO aldehyde mg/L mmol/L H•NO O•NO CC•NO 3C•NO

formaldehyde 400 13 2 1 0 0 hydrocinnamaldehyde 1 0.007 10 1 3 1
glyoxal 7000 120 2 2 0 0 hexanal 0.35 0.003 12 1 0 0
glyoxylic acid 2000 27 2 3 0 1 2-ethylbutanal 6 0.06 12 1 0 1
acetaldehyde 25 0.57 4 1 0 0 cis-4-heptenal 0.0004 3.6E−06 12 1 1 0
acrolein 15 0.27 4 1 1 0 cuminaldehyde 0.4 0.0027 12 1 3 3
furfural 150 1.6 4 2 2 1 heptanal 0.08 0.00070 14 1 0 0
propionaldehde 30 0.52 6 1 0 0 2-ethyl-2-hexenal 0.2 0.0016 14 1 1 1
D-(+)-glyceraldehyde 125 1.4 6 3 0 1 trans-2,cis-6-nonadienal 0.00005 3.6E−07 14 1 2 0
crotonal 8 0.11 6 1 1 0 trans-2,trans-4-nonadienal 0.0003 2.2E−06 14 1 2 0
5-(hydroxymethyl)furfural 1000 7.9 6 3 2 2 octanal 0.04 0.00031 16 1 0 0
5-methylfurfural 20 0.18 6 2 2 2 2-ethylhexanal 1 0.0078 16 1 0 1
benzaldehyde 2 0.019 6 1 3 1 trans-2-nonenal 0.00011 7.8E−07 16 1 1 0
butyraldehyde 1 0.014 8 1 0 0 trans-2,trans-4-decadienal 0.0003 2.0E−06 16 1 2 0
methional 0.25 0.002 8 1 0 0 citral 0.15 0.00099 16 1 2 2
aldol 8 0.091 8 2 0 1 nonanal 0.02 0.00014 18 1 0 0
isobutanal 1 0.014 8 1 0 1 trans-2-decenal 0.001 6.5E−06 18 1 1 0
trans-2,trans-4-hexadienal 0.8 0.008 8 1 2 0 citronellal 4 0.026 18 1 1 2
phenylacetaldehyde 1.6 0.013 8 1 3 1 decanal 0.006 3.8E−05 20 1 0 0
cinnamaldehyde 6 0.045 8 1 4 1 hydroxycitronellal 1.5 0.0087 20 2 0 2
pentanal 0.5 0.006 10 1 0 0 10-undecenal 0.0035 2.1E−05 20 1 1 0
2-methylbutanal 1.25 0.015 10 1 0 1 undecanal 0.0035 2.1E−05 22 1 0 0
isopentanal 0.6 0.007 10 1 0 1 dodecanal 0.004 2.2E−05 24 1 0 0
trans-2-hexenal 0.6 0.006 10 1 1 0

a H•NO, number of hydrogen atoms; O•NO, number of oxygen atoms; CC•NO, number of carbon−carbon double bonds; 3C•NO, number of carbon atoms connecting
to three or four non-hydrogen atoms.

y ) Σi fi(xi) + e (1)
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this appears to suffice in this modeling approach because the
aromatic compounds do not appear as outliers, except in the
ketone models. The effect of increasing numbers of hydrogen
atoms (seeFigure 1) was an overall trend to increase the
threshold, particularly with the very highest numbers of
hydrogen atoms. There was a distinct peak in threshold for
alcohols with 12 hydrogen atoms. Because the number of
hydrogen atoms in a molecule tends to increase with the number
of carbon atoms, the fact that smaller carbon numbers and larger
hydrogen numbers were both associated with higher thresholds
appears to be contradictory. Meilgaard (13) observed that the
thresholds of several homologous series of compounds (ex-

pressed as milligrams per liter) versus the number of carbons
in a molecule in nearly every case declined to a minimum (often
near eight or nine carbons) and then rose again to form a “v”
or “u” shape. In the case of the primary, straight-chain, saturated
alcohols, this pattern can be seen with a minimum threshold
(here expressed in millimoles per liter) at nine carbons (see the
data points inFigure 3). In this series of compounds the
contributions of the predictors other than C•NO and H•NO
are all constant. It can be seen that the thresholds of this
compound subset are predicted reasonably well (the line in
Figure 3) because of the increasingly steep contribution of
H•NO. Implicit in either C•NO or H•NO should be informa-
tion about molecular size and polarity. Stronger sensory impacts
(lower thresholds) are associated with larger numbers of carbon
atoms (larger molecules) and carbon-carbon double bonds and
with smaller numbers of hydrogen atoms (smaller molecules
or less saturation) and conjugated double bonds (lower saturation
or in this case aliphatic rather than aromatic nature) and less
branching.

Table 6shows the results of QSAR modeling of the 40 ester
thresholds inTable 2 using PCR, PLSR, and ACE. The results

Table 4. Flavor Thresholds Reported in Beer (13, 14) and Structure Descriptorsa for 43 Ketones

threshold

ketone mg/L mmol/L C•NO H•NO O•NO CONJ 3C•NO

acetone 200 3.4 3 6 1 0 1
pyruvic acid 300 3.4 3 4 3 2 2
2-butanone 80 1.1 4 8 1 0 1
acetoin 50 0.57 4 8 2 0 2
diacetyl 0.15 0.0017 4 6 2 2 2
oxalacetic acid 500 3.8 4 4 5 2 3
2-pentanone 30 0.35 5 10 1 0 1
3-hydroxy-3-methyl-2-butanone 400 3.9 5 10 2 0 2
3-methyl-2-butanone 60 0.70 5 10 1 0 2
3-pentanone 30 0.35 5 10 1 0 1
1-penten-3-one 0.03 0.00036 5 8 1 2 1
2,3-pentanedione 0.9 0.0090 5 8 2 2 2
cyclopentanone 200 2.4 5 8 1 0 1
2-hexanone 4 0.040 6 12 1 0 1
3,3-dimethyl-2-butanone 25 0.25 6 12 1 0 2
4-methyl-2-pentanone 5 0.050 6 12 1 0 2
2,3-hexanedione 15 0.13 6 10 2 2 2
cyclohexanone 40 0.41 6 10 1 0 1
mesityl oxide 4 0.041 6 10 1 2 2
2-acetylfuran 80 0.73 6 6 2 3 2
2,4-dimethyl-3-pentanone 8 0.070 7 14 1 0 3
2-heptanone 2 0.018 7 14 1 0 1
3-heptanone 3 0.026 7 14 1 0 1
4-heptanone 4 0.035 7 14 1 0 1
5-methyl-2-hexanone 7 0.061 7 14 1 0 2
4-methylcyclohexanone 25 0.22 7 12 1 0 2
2-octanone 0.25 0.0019 8 16 1 0 1
3-octanone 0.5 0.0039 8 16 1 0 1
6-methyl-3-heptanone 1.2 0.0094 8 16 1 0 2
1-octen-3-one 0.000025 2.0E−07 8 14 1 2 1
o-aminoacetophenone 0.005 3.7E−05 8 9 1 4 3
acetophenone 3 0.025 8 8 1 4 2
2,6-dimethyl-4-heptanone 8 0.056 9 18 1 0 3
2-nonanone 0.2 0.0014 9 18 1 0 1
2-decanone 0.25 0.0016 10 20 1 0 1
3-decanone 0.3 0.0019 10 20 1 0 1
d-(+)-carvone 0.4 0.0027 10 14 1 2 4
benzylacetone 2.5 0.017 10 12 1 3 2
trans-4-phenyl-3-buten-2-one 1 0.0068 10 10 1 5 2
2-undecanone 0.4 0.0023 11 22 1 0 1
2-dodecanone 0.25 0.0014 12 24 1 0 1
R-ionone 0.0026 1.4E−05 13 20 1 2 4
â-ionone 0.0013 6.8E−06 13 20 1 3 4

a C•NO, number of carbon atoms; H•NO, number of hydrogen atoms; O•NO, number of oxygen atoms; CONJ, number of conjugated double bonds; 3C•NO,
number of carbon atoms connecting to three or four non-hydrogen atoms.

Table 5. Results of QSAR Modeling of Alcohol Threshold Data in
Table 1 Using PCR, PLSR, and ACE

method components residual SSa R 2 residual PRESSb R 2cvc

PCR 4 20.62 0.835 26.49 0.788
PLSR 4 20.62 0.835 26.49 0.788
ACE 5 10.02 0.920 21.76 0.826

a Residual sum of squares. b Predicted residual error sum of squares. c R 2cv
) cross-validated R 2.
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from ACE (R2 ) 0.937 andR2cv ) 0.873) were much better
than those from PCR and PLSR (which had best prediction
models withR2 ) 0.491 and 0.484, respectively; both hadR2-

cv ) 0.379). The lowR2 andR2cv obtained with PCR and PLSR
indicated very poor performance in modeling and prediction of
ester thresholds. Again, this occurred because the actual
underlying relationships between the five structure descriptors
used and the logarithms of ester thresholds were nonlinear (see
Figure 4), and both PCR and PLSR are based on fitting linear
relationships between response and predictors. The relationship
between the logarithms of thresholds and the ACE model is
displayed inFigure 5. The compounds that deviated most from
the model here are ethyl butyrate and isobutyl butyrate (both
above) andn-hexyl acetate andtert-butyl acetate (both below).
For esters, higher flavor thresholds (weaker sensory impacts)
were generally associated with larger numbers of carbon and
oxygen atoms (Figure 4) and with smaller numbers of hydrogen
atoms and conjugated double bonds. In this case the downward
impact on thresholds of increasing H•NO was greater than the
upward effect of increasing C•NO. Increasing the carbon
number of the ester alcohol chain (AC•NO) tended to
moderately decrease the threshold; there were, however, two
large exceptions to this trend. The first was an extremely low
point in thresholds at AC•NO ) 2 (corresponding to ethyl
esters). The second was a high threshold value at AC•NO )
4 (corresponding to butyl esters). Stronger ester sensory impacts

Figure 1. Transforms applied to C•NO, H•NO, CC•NO, CONJ, and
3C•NO in the ACE model of alcohol flavor thresholds.

Figure 2. Relationship (R 2 ) 0.920) between the logarithms of observed
alcohol thresholds (mmol/L) and predictions obtained using ACE fitting.

Figure 3. Flavor thresholds of saturated, unbranched, primary alcohols
as a function of carbon numbers (data points) and thresholds predicted
from the ACE model (line).

Figure 4. Transforms applied to C•NO, H•NO, O•NO, CONJ, and
AC•NO in the ACE model of ester flavor thresholds.

Table 6. Results of QSAR Modeling of Ester Threshold Data in Table
2 Using PCR, PLSR, and ACE

method components residual SSa R 2 residual PRESSb R 2cvc

PCR 3 23.59 0.491 28.81 0.379
PLSR 1 23.95 0.484 28.79 0.379
ACE 5 2.90 0.937 5.89 0.873
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(lower thresholds) then were associated with smaller numbers
of carbon atoms (smaller molecules) and oxygen atoms and with
larger numbers of hydrogen atoms (larger molecules or greater
saturation) and conjugated double bonds (lower saturation). The
effect of AC•NO varied as described above.

QSAR models of the 45 aldehyde thresholds inTable 3were
obtained using PCR, PLSR, and ACE, as shown inTable 7.
ACE again performed better than PCR or PLSR. The ACE
transformation plots for each structure descriptor are shown in
Figure 6. Figure 7 shows the overall ACE model. The
compounds with the largest residuals werecis-4-heptenal and
glyoxylic acid (above) and 10-undecanal (below). The effects
of the predictors can be seen from the transform plots inFigure
6. For aldehydes, higher flavor thresholds (weaker sensory
impacts) were generally associated with higher branching
(3C•NO), smaller numbers of hydrogen atoms, and larger
numbers of oxygen atoms. Higher thresholds were also associ-
ated with the lowest (none) and highest (four) numbers of
carbon-carbon double bonds. Examination ofTable 3 shows

that only five compounds had either of the two higher levels of
carbon-carbon double bonds, and all five of these were
aromatic, so the effect here may be mainly a differentiation
between aliphatic and aromatic aldehydes. Only one compound,
cuminaldehyde, had 3C•NO) 3. Stronger sensory impacts
(lower thresholds) would conversely be associated with small
3C•NO values and numbers of oxygen atoms and with larger
numbers of hydrogen atoms (larger molecules or greater
saturation). For the aliphatic aldehydes a stronger flavor impact
was associated with larger numbers of carbon-carbon double
bonds, whereas the direction was opposite for aromatic alde-
hydes.

QSAR models of the 43 ketone thresholds inTable 4 were
constructed using PCR, PLSR, and ACE, and the results are
shown inTable 8. As before, ACE provided better performance
than PCR or PLSR. TheR2cv for the ACE ketone model was
lower than with ACE models of the other compound classes.
The ACE transformation plots for each structure descriptor are
shown in Figure 8, whereas the relationship between the
logarithms of observed thresholds and the model obtained using
ACE is shown inFigure 9. The compounds with relatively large
residuals wereo-aminoacetophenone, diacetyl, and cyclohex-
anone (all above) and acetophenone, mesityl oxide, 2,3-
hexanedione, and 2-butanone (below). For ketones higher flavor
thresholds (weaker sensory impacts) were generally associated
with larger numbers of carbon and oxygen atoms and with
smaller numbers of hydrogen atoms and conjugated double
bonds. It is interesting that the number of oxygen atoms fits a
linear function even though the compounds with different
numbers of oxygen atoms varied considerably in their functional
groups (including diketones and carboxy and hydroxy groups).
The effect of branching was that molecules with modest amounts
of branching tended to have higher thresholds. Stronger sensory
impacts (lower thresholds) were conversely associated with
smaller numbers of carbon and oxygen atoms, with higher
numbers of hydrogen atoms (larger molecules or greater
saturation) and conjugated double bonds, and with either no or
much branching.

The predictor variable importance values given by direct ACE
modeling are shown inTable 9. These magnitudes show the
relative importance of the different predictors. The only term
common to all four models was H•NO, and this was the most

Figure 5. Relationship (R 2 ) 0.937) between the logarithms of observed
ester thresholds (mmol/L) and those predicted using ACE fitting.

Figure 6. Transforms applied to H•NO, O•NO, CC•NO, and 3C•NO
in the ACE model of aldehyde flavor thresholds.

Table 7. Results of QSAR Modeling of Aldehyde Threshold Data in
Table 3 Using PCR, PLSR. and ACE

method components residual SSa R 2 residual PRESSb R 2cvc

PCR 4 36.70 0.804 46.97 0.749
PLSR 4 36.70 0.804 46.97 0.749
ACE 4 15.02 0.920 34.09 0.818

Figure 7. Relationship (R 2 ) 0.920) between the logarithms of observed
aldehyde thresholds (mmol/L) and those predicted using ACE fitting.

Table 8. Results of QSAR Modeling of Ketone Threshold Data in
Table 4 Using PCR, PLSR, and ACE

method components residual SSa R 2 residual PRESSb R 2cvc

PCR 5 33.27 0.700 52.90 0.523
PLSR 5 33.27 0.700 52.90 0.523
ACE 5 8.00 0.928 42.28 0.619
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influential term for all but alcohols. It was of interest to evaluate
the possibility of predicting the threshold of each class from
this single term using ACE. This was attempted, and the results
are shown inTable 10. Results with alcohols, esters, and
aldehydes were quite respectable, although weaker in each case
than the models with more terms already described. The ketone
model was quite weak and unsatisfactory.

Clearly it is possible to construct nonlinear QSAR models
that relate the flavor threshold of a compound to its molecular
features. This was successful for each of the four classes of
compounds for which this was attempted. It was also possible
to make somewhat weaker models that relate the flavor threshold
to only the number of hydrogen atoms in the compounds for
alcohols, esters, and aldehydes, but not ketones.
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